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SUMMARY 

This work considers a group of problems associated with rotating Timoshenko beams. The beam is not 
assumed to be hubclamped, i.e. the axis of rotation does not necessarily pass through the beam's clamped 
end. Cases of physical interest involving off-clamped beams include wobbling rotors, impellor blades, and 
turbine blades. 

For clamped-free boundary conditions, we seek solutions of the governing equations which correspond 
to transverse buckling. For the rotor, it is known that Euler-Bernoulli beams do not have buckled modes. 
By contrast, the Timoshenko beam will have an infinite number of buckled modes. In the impellor blade 
case, both Euler-Bernoulli and Timoshenko beams will have an infinite number of buckled modes. However, 
the Timoshenko beam will buckle at a lower eigenrotation speed. This is also true for the case of a rotating 
Timoshenko beam with clamped-clamped boundary conditions, e.g. a turbine blade clamped at both the 
rim and hub of a rotating platform. 

Analytic results for both the clamped-free and clamped-clamped cases are augmented by results obtained 
from numerical solution of the corresponding boundary value problems. 

1. Introduction 

This paper is a cont inuat ion of our investigations into the effects of rotation and precession 

on the buckling and vibration of beams [ 2 - 6 ] .  Here we confine our at tention to the transverse 

(perpendicular to the plane of rotation) buckling of a Timoshenko beam. 

As Figure 1 illustrates, if the rotation axis precesses slightly we are essentially modeling a 

helicopter blade whose drive shaft is slightly bent  or undergoes a modest wobble. This will 

be seen to correspond quantitatively to a < ½, where a = R/L  is a dimensionless parameter 

occurring in the governing equations. 

The more realistic accounting of shear, which the Timoshenko beam model purports to 

give, manifests itself in a significant manner with respect to the question of transverse (out 

of the page) buckling when a < ½. In short, the Timoshenko beam equations exhibit an infinite 

number of buckled modes corresponding to an infinite number of eigenrotation speeds ~2 n. 

By contrast the Euler-Bernoulli model has no transverse buckled states when a < ½ [2, p. 482] ,  

in consonance with the fact that the axial load is purely tensile. 

This dichotomy is reflected mathematically in a very striking manner. The Timoshenko 

equation contains a dimensionless 'shear parameter' o, which, when set to zero, provides the 

governing equation of the Euler-BernouUi beam [2, p. 491].  Thus we shall be considering 
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Figure 1. Clamped-free beam of length L rotating in the horizontal plane with constant angular velocity 
12. The clamped end describes a circle of radius R (0 ~ R <L/2) about the axis of rotation. 

Figure 2. Clamped-free beam of length L attached to the rim of a wheel of radius R > L which rotates in 
the horizontal plane with constant angular velocity 12. 

an eigenvalue problem which has no eigenvalues when o = 0 and an infinite number of  eigen- 

values as soon as o > 0, i.e. when the beam 'becomes'  a Timoshenko beam. 

When a / >  1 we have, as Figure 2 illustrates, a model of  an impellor blade. In this case the 

load will obviously be purely compressive. Thus the existence of  an infinite number of  trans- 

verse buckled states together with their corresponding eigenrotation speeds I2 n for the Euler- 

Bernoulli model  should come as no surprise [2, p. 491] .  The Timoshenko model will likewise 

have an infinite number of  transverse buckled states, but they will occur at lower critical 

rotation speeds. 
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When the rotating beam is clamped at the rim and the hub, as in Figure 9, we have a model 

of  a turbine blade. The axial load is compressive near the rim but tensile near the hub. The 

Euler-Bernoulli model of  this situation was considered in [4] and was seen to have an infinite 
number of  buckled states with graphs that all 'wiggled' near the rim. The Timoshenko beam 

will differ in two respects: the critical rotation speeds will be lower and the eigensolutions 

will exhibit a nodal structure (i.e. 'wiggle') near the rim and the hub. 

2. Governing equations and analysis (clamped-flee) 

Let W(x) be the deflection of  the Timoshenko beam, where x is the distance along the beam 

measured from the clamped end. Let ~'(x) denote the slope of  the deflection curve when the 
shearing force is neglected. Then, using the notation of  [ 1 ] ,  we have 

E I ~ x x  + kAG(Wx -- ~ )  + P ( ~  -- Wx) = O, 

k A G ( W x x - - ~ x ) + ( P ~ ) x  = O; 

W(O) = ~(0)  = O, q~x(L) = W x ( L ) - - * ( L )  = O. 

( la ,  b) 

(2a, b) 

Here P( x ) =  pA ~22 (L --x)[½(L + x ) -  R ]  (See Figures 1 and 2), k is the Timoshenko con- 

stant, A is the cross-sectional area o f  the beam and G = 2(1 + v)E is the shear modulus when 
v = Poisson's ratio. The beam is clamped (2a) at x = 0 and free (2b) at the other end. 

A set of  dimensionless equations are obtained from the following identifications: s = x/L, 
= u(s), W =Lv(s) ,  I~ = pAL*~22/EI, a = R / L  and o = 2I(1 + v)/AL2k. Then we have 

o u " +  (1 -- olap(s))(v' - -u)  = O, ol~(p(s)u)' + ( v " - - u ' )  = 0; 

u(O) = v(O) = O, u ' (1)  = v ' ( 1 ) - - u ( 1 )  = O; 

p(s) = (1 --s)[½(1 + s ) - - a ] .  

(3a, b) 

(4a b) 

(5) 

It is clear that (3b) can be integrated from s to I and then v' can be eliminated in (3a). 

This leaves us with the following two point boundary value problem 

u " +  lap(s)[olap(s)-- 1] u = 0, (6) 

u(0)  = u ' (1)  = 0. (7a, b) 

In (6) we regard/a as the eigenvalue and note that/a =/a(o ,  a).  

Case l : a < ½ 
When ct < ½ it is clear that p(s) >10. Thus when o = 0 there can be no positive eigenvalues for 
(6). It is noted that (6) with o = 0 is the Euler-BernouUi beam [2, p. 491] ! 

Next we show that for o > 0 system ( 6 - 7 )  will have nontrivial solutions. This is one o f  the 
results alluded to in the introduction. 
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We begin with a plausibility argument based on a comparison equation. Note that 
p(s )  <~ ½ (1 - - a )  2 for ct < ½. Thus consider 

y " + ½ / a ( 1 - - a )  2 [ ½ o u ( 1 - a )  2 - 1 1 y  = O, 

y(O)  = y ' ( 1 )  = O. 
(8) 

An eigenfunction for (8) is 

yn(S)  = sin ( x / O . ( o ~ .  -- 1)s) (9) 

provided 

~2 
fin(Olfi. -- 1) = (2n + 1) 2 -~- (~o) 

where/~ = ½(1 --a)2/a.  The o - - ~  response plane tells the whole story. When o = 0 there are 

no eigen4i's. When o > 0, there are an infinite number o f  eigen-/i's, corresponding to the 

intersection o f  horizontal lines with the curves o f  (10). Solutions o f  equation (10) are shown 
in Figure 3. 

In order to demonstrate that these same properties are enjoyed by system ( 6 - 7 )  it proves 

convenient to temporarily regard # as given and o as the sought-after eigenvalue. Equation 
(6) may be written as 

1 . 0 -  

0.8 

0 .6  

o" 

0,4 

0 .2  
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Figure 3. Eigenvalues of the comparison system (8) for a = 0.1. 
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(6) 

where q(s)  = lap(s). Clearly (~) is in standard Sturm-Liouville form as far as o is concemed 
and hence there are an infinite number of  eigen-o's, say on's, for the system (6 -7 ) .  This is 
true for each fixed la. From the Rayleigh quotient for o, it is easy to show that On (la) is a 
continuous decreasing function of  la with On (0) = oo and on (oo) = 0. Thus the picture presented 
in Figure 3 is qualitatively correct for (6 -7 ) .  

Lower bounds for an (la) can easily be provided using the above-mentioned Rayleigh 
quotient. Of greater utility however, is the following observation. I f  we return to regarding la as 
the eigenvalue for a given o, then 

2 
U > ( 1 - - o ?  =) o "  (11) 

This lower bound is easy to come by - in order for eigenfunctions to exist the coefficient 
of  la must be positive on some subinterval of  [0, 1]. Although (11) is a crude lower bound, 
it is quite useful. Since in practice o "~ 1, we see that the first eigenrotation speed is quite 
large. Equation (11) also shows that the eigenrotation speed is an increasing function of  the 
geometric off-clamping parameter a. 

Having obtained the basic properties of  la = la(o, a) ,  we now turn to direct numerical sol- 
ution of  the boundary value problem ( 6 - 7 )  for a < ~. This system was solved using COLSYS 
[9], a collocation code designed for the solution of  nonlinear, multi-point boundary value 
problems for systems of  ordinary differential equations. Solution strategy included appending 

to (6) the additional scalar differential equation 

U' = 0. (12) 

Equation (6) is now nonlinear in la, but this does not cause any computational difficulties. 

The third-order boundary value problem ( 6 - 7 ,  12) for (la, u) is now completed by specifying 
an additional boundary normalization condition 

u ' (0)  = 1. (13) 

Numerical results for the lowest eigenvalue lao(O, a)  for a = 0.0, 0 .1 ,0 .25  and o = 0.1 to 1.0 
are given in Table 1. The first two eigenvalues la0 and lal are also shown as functions o f o  for 
these three fixed values of  a in Figures 4, 5 and 6. To facilitate comparisons, these figures also 
contain the first two curves defined by ( I0 )  [where p(s) is replaced by its upper bound, 
½(1 - - a ) = ] .  

The numerical results confirm the qualitative behavior predicted by ( 1 0 - 1 1 ) .  In particular, 
for fixed o, la is an increasing function of  a. Also, la(o, a )  is large for small o. For example, 

the computed value oflao for a = 0 and o = 5 x 10 -a is lao(5 x 10 -3 , 0) = 485.77. 
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Table 1. Lowest eigenvalue ~o (a, a) for the rotating Timoshenko beam with clamped-free boundary con- 
ditions and 0 ~ a < 1/2. 

0.0 0.1 0.25 

0.1 37.03 43.29 57.71 

0.2 21.74 25.35 33.62 

0.3 16.20 18.87 24.97 

0.4 13.25 15.42 20.38 

0.5 11.39 13.24 17.48 

0.6 10.08 11.73 15.47 

0.7 9.12 10.60 13.98 

0.8 8.37 9.72 12.82 

0.9 7.76 9.02 11.88 

1.0 7.26 8.44 11.12 
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Figure 4. First two eigenvalues for transverse buckling of a rotating Timoshenko beam with clamped-free 
boundary conditions when a = 0. Circled points in the (t~, a)-plane were obtained by direct numerical 
solution of (6-7).  Solid curves give eigenvalues of the corresponding comparison system (8). 
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Same caption as Figure 4, but a = 0.1. 
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Same caption as Figure 4, but ~ = 0.25. 
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Case2: a >  1 

When a > 1 it is clear from (5) that p (s) ~< 0. Thus (6 -7)  with tr = 0 has an infinite number of 
eigen-/~'s. In fact, using the change of variables t = (s --a)/(1 - -a) ,  we can transform (6-7)  
(with a = 0) into a standard Parabolic Cylinder function equation [8]. The eigen-/a's will 
then be the roots of 

2 ' 5 ' - 1)(2")1 4 

= W ( ( 1 - - ~ ) 2 ~ / ~  ,~(2~)1/4)W ( (1 - -~)2  ~ / - ~  (1 - -~ ) (2~ ) ' / 4 )  (14) 
2 2 ' ' 

where ( " )  = d/dt. (See [8] for definition of W(a, x)). 
Here too we can profitably examine a relevant comparison equation. In this case we have 

p(s) >~ ½ -- ct(= p (0)). Thus, consider 

y"+(½--a) laI (½--a)o la- -1]y  = 0, y (0 )  = y ' (1)  = 0. (15) 

Once again we have yn(s) = sin (x/if(off + 1) s) as an eigenfunction provided fin (affn + 1) = 
(2n + 1)27r2/4, where fin = (a -- ½)/~n- The tr--t7 response plane is in Figure 7. The eigen- 

1 
- ~ - 2 -  

Figure 7. Eigenvalues of the comparison system (15) for a > 1. 
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Figure 8. Lowest eigenvalues for transverse buckling of a rotating Timoshenko beam with clamped-free 
boundary conditions when a > 1. Circled points in the (#, o)-plane were obtained from direct numerical 
solution of (6-7). For each o, the five values shown correspond to (from right to left) a = 1.025, 1.05, 
1.1, 1.5, and 2.0. 

ff, 's are found from the intersection of the curves in Figure 8 with o = constant lines. From 

this it is clear that fin(O)< ft ,(0). If we can show the same to be true for (6 -7 ) ,  then we will 

have shown that Timoshenko beams buckle at lower rotation speeds than Euler-Bernoulli beams 

when a > 1. 

To show that/2n(O) < /2 , (0 )  for o > 0 it suffices to show that d/2,/do < 0 for o > 0. To do 

this take d/do of (6 -7 ) .  This gives 

tt 
/2o + /2~p2ouo--Upuo = uP(/2o--2/2/2ooP--/22P), uo(O) = Uo(1) = O. 

If/2 is an eigenvalue of ( 6 - 7 ) ,  then the Fredholm alternative theorem demands that 

y~ u2p3(go -- 2/2/2oo p --/22p)ds = 0 

o r  

12o folu2p3(l  _ 2/2op)ds = ~2 j'~ p4u2ds" 

Recall that p (s) < 0 here and o > O. Q.E.D. 
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Table 2. Lowest eigenvalue t~o (a, a) for the rotating Timoshenko beam with clamped-free boundary con- 
ditions and a > 1. 

1.025 1.05 1.1 1.5 2.0 

0.0 29.27 26.81 22.95 10.61 6.33 

0.1 20.76 19.18 16.64 8.00 4.83 

0.2 17.33 16.05 13.98 6.80 4.13 

0.3 15.28 14.18 12.37 6.07 3.69 

0.4 13.87 12.88 11.25 5.54 3.38 

0.5 12.81 11.90 10.41 5.14 3.14 

0.6 11.98 11.14 9.75 4.83 2.95 

0.7 11.30 10.51 9.20 4.57 2.79 

0.8 10.73 9.98 8.75 4.35 2.66 

0.9 t0.25 9.53 8.36 4.16 2.54 

1.0 9.82 9.14 8.02 3.99 2.44 

Results obtained by direct numerical solution of the boundary value problem for a > 1 

confirm that the Timoshenko beam will buckle at a lower rotation speed than the Euler- 

Bernoulli beam. Numerical results for the lowest eigenvalue/~o for five values ofet and a from 0 

to 1 are given in Table 2 and Figure 8. 

3. Governing equations and analysis (clamped-clamped) 

The only changes necessary to model the turbine blade (Figure 9) are to change P(x)  to 

P(x)  = p a  g2 2 {~ L (R -- ~ L)  + (L -- x )  [½ (L + x )  -- R] }* (16) 

and to clamp both ends so that (2b) is replaced by 

W(L) = ~ ( L )  = 0. (17) 

In this case the dimensionless axial load is 

/~(s) = ½ (a -- 3) + (1 -- s) [~ (1 + s) -- a ] .  (18) 

*Note that c~ ~ 1 and R-L is the hub radius. 
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Figure 9. Clamped-clamped beam of length L rotating in the horizontal plane with constant angular 
velocity. 

Note that / ) (0)  < 0 (compression) and/3 ( 1 ) >  0 (tension). The governing dimensionless equa- 

tions are now (3a, b), but with p (s) replaced by/~ (s) and with (4b) replaced by 

u(1) = v(1) = O. (19) 

To analyze this problem integrate (3b) between 0 and s to get 

o ~ ( s ) u  + v' - u  = k = v ' (O) ,  (20) 

where k is, for the moment, unknown. As before, we substitute (20) into (3a) and obtain the 
boundary value problem 

u" + ~uifi(o/.q) -- 1)U = k (0/46 -- 1), (21) 
0 

(22) 

and 

u O )  = u(1) = 0 

1 

fo (oup - 1)uds = k. (23) 

Condition (23) comes from integrating (20) between 0 and 1. 
System (21-23)  is the same sort of unusual eigenvalue problem encountered in [4, bottom 

of p. 195]. It once again proves convenient to temporarily regard/~ as given and o as the eigen- 
value. 

To unravel (21-23)  we first turn our attention to the following standard Sturm-Liouville 
system: 

~ " - - ~ + 6 0 2 ~  = 0, ~(0) = ~(1) = 0, (24) 
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where q(s)  = p/) (s). 

There are an infinite number of  eigenvalues 6,~ of  (24) together with their respective eigen- 
functions ¢n(S). 

Consider the following two expansions: 

u(s) = Xu,# . ( s ) ,  (25) 

k 
o02 (04 -- 1) = F-,A,dp.(s), (26) 

where 

1 

Un = f q:(s)u(s)¢n(s)ds (27) 
0 

and 

An = fo 1 ko (o4 - 1)¢n(s)ds. (28) 

Since/6(s0) = 0 for a unique So e(0, 1) we see that the left-hand side of  (26) does not belong to 
L~O, 1)(02), i.e. the set of  functions which are square integrable on (0, I)  with respect to the 
weight function c~ 2. Thus equality in (26) is at best point wise (though in fact uniform on 
compact subsets not containing So) while (25) converges absolutely and uniformly (see [7, p. 
1681). 
In any event, we have 

I <u ,, An = --qu + oq2u)¢nds = (o-- On) 42uCnds = (e-- dn)U n. (29) 
0 0 

Thus 

u(s)  = ~.(  Ao~n~n ) ¢n(S) = k [f~°(Oq--1)¢nds] 
Y o -  ~. c.(s) (3o) 

and enforcing (23) results in 

1 [flo(°4-- 1)ends] 2 
o ~" a--On = 1. (31) 

If we call the left-hand side of  (31) F(o) ,  then equation (31) may be envisioned as in Figure 10. 
The desired eigen-o's of  (24) (On'S) are given by the intersections of  the curves F(o) and the 
horizontal line at unit height. We also note that  as 602 - - q  is positive for s < So and near s = 1 
for sufficiently large 6, the functions Cn (s) will always have a nodal structure ('wiggle') for 
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Figure 10. The function F(o) defined by equation (31). 
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s < So and also near s = 1 for n sufficiently large. This same behaviour is clearly inherited by 
u (s) and v(s). 

Having shown that (21-23)  is, in fact, an eigenvalue problem, we now wish to return to 
considering # as the eigenvalue and o as given. Firstly, we note that the o-/a plane is essentially 
the same as in Figure 8. Vertical lines cross the curves and determine the eigenvalues/a n (a, a) of 

(21). Also, the eigenvalue/a does not depend on the value of the constant k in (21) and (23). 
This is easily shown by substituting the Green's function solution of (21-22)  into (23). The 
resulting eigenvalue relation for /~(o, a) is independent of k. Hence, k may be prescribed by 

normalizing the eigenfunctions un(s ) in some standard way, e.g. 

u2ds = 1 or 2u2ds = 1. 
"0 

Finally, we wish to confirm that, as implied by Figure 8, the lowest buckling eigenvalue/10 (o, a) 
for the clamped-clamped rotating Timoshenko beam is smaller than the corresponding eigen- 
value /ao(0, a)  for the Euler-Bernoulli beam, i.e. the Timoshenko beam buckles at a lower 
rotation speed. To show this behavior, let {~m } (m = o, 1, 2 . . . .  ) be the infinite discrete set of 
special values of /a such that 61(~m) = 0, where 61 is the lowest eigenvalue of (24) and 
/~ o < ~ 1 < . . . .  These special values of/a are related to the Euler-Bernoulli buckling problem. 
Indeed, by [4], if/aj(0, a) is the j-th Euler-Bernoulli buckling eigenvalue, then 

tYs < ~s(o ,a )  < f f s . , .  ( j  = o, 1 ,2  . . . .  ). 

Let /a =/a * < S o .  There are clearly still an infinite number of  positive eigenvalues fin(g*) of 
(24), i.e. the crossing points of  the vertical line/a =/a* with the curves. Also, by Figure 10, for 
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the Timoshenko beam 61 ~ * )  < ol (p*) < o2 (p*). Hence, if o = ol is given, then/a*(ox, a)  is 
an eigenvalue of  ( 21 -23 )  and gives a buckling rotation speed for the Timoshenko beam. As 

u*(o~,a)  < ~o < uo(O,a), 

the desired result is shown. 

Several interesting problems arise in the numerical solution o f  the eigenvalue problem for 

the clamped-clamped rotating Timoshenko beam. These problems stem for the fact that we 

impose boundary conditions at s = 0 and s = 1 on v(s )  itself while the differential equations 

(3a, b) involve only v' and v". Thus, even though the eigenvalues/an(o, a)  are independent of  
the constant k in (23), and k may be fixed by normalizing the eigenfunctions, the system 

(21 -22 )  cannot be solved independently o f  the integral constraint on k. It is far simpler in this 

problem to solve the coupled fourth-order equations (3a, b) for u and v directly, subject to the 

clamped-clamped boundary conditions. Another approach, which also avoids the integral 

constraint, is to define w ( s )  = v' (s) --  u (s) and solve the third-order system 

ou" + (1 - ou~(s))w = o, ou(~(s)u)' + w' = o (32a, b) 

with the clamped-clamped conditions 

u(0)  = u(1)  = 0 (33) 

and the linked condition 

w ( 1 ) - -  w(0) = 0. (34) 

Table 3. Lowest eigenvalue t~0 (a, a) for the rotating Timoshenko beam with clamped-clamped boundary 
conditions. 

1.025 1.05 1.1 1.5 2.0 

0.1 119.85 114.84 105.95 65.02 43.67 

0.2 76.27 73.07 67.39 41.31 27.73 

0.3 59.59 57.08 52.64 32.26 21.65 

0.4 50.37 48.25 44.50 27.26 18.30 

0.5 44.37 42.50 39.19 24.01 16.12 

0.6 40.08 38.40 35.40 21.69 14.56 

0.7 36.82 35.28 32.53 19.92 13.37 

0.8 34.24 32.80 30.25 18.53 12.43 

0.9 32.14 30.79 28.39 17.39 11.67 

1.0 30.38 29.10 26.83 16.43 11.03 
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Figure 11. Lowest eigenvalues for transverse buckling of a rotating Timoshenko beam with clamped- 
clamped boundary conditions. Circled points in the (/~, o)-plane were obtained by direct numerical solution 
of (3), (4a), and (19). For each a, the five values shown correspond to (from right to left) a = 1.025, 1.05, 
1.1, 1.5, and 2.0. 

Equation (34) is obtained by integrating equation (3a) between zero and one and using (33). 
Results for the lowest buckling eigenvalue/a0 (a, a) for five values of ct > 1 and o from 0.1 to 

1.0 are given in Table 3 and Figure 11. Comparison of the present numerical results with [4] 
confirms that if a > O, #o (a, a) < tto (0, a). 
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